THE NOAA GPM PROVING GROUND AND HYDROMETEOROLOGY TESTBED SOUTHEAST PILOT STUDY (HMT-SEPS)

Rob Cifelli1, Allen White1, Ralph Ferraro2, Bob Kuligowski2, Chandra Kondragunta2, Pingping Xie3, Yu Zhang3, Mike Bodner3

1NOAA OAR/ESRL
2NOAA NESDIS
3NOAA NWS
Overview

- Global Precipitation Measurement Mission (GPM)
 - Concept
 - SGPMS
 - Proving ground for precipitation products and services
- HMT-SEPS
 - Instrument deployment
 - QPE and QPF goals
 - Extreme precipitation research
- Next Steps
The Global Precipitation Measurement Mission (GPM)

- Retrieval of global precipitation from space
- Primary sensors
 - DPR (JAXA) – Ka/Ku band radar (successor to TRMM PR)
 - Dual frequency helps improve vertical structure of precipitation
 - Dual frequency improves sensitivity to lighter precipitation
 - GMI (NASA) – 13 channel (10-183 GHz) conically scanning radiometer (successor to TRMM TMI)
 - Enhancement for cold season precipitation over land
- MOU between NASA and NOAA
 - NOAA receiving test data sets
 - NESDIS, JCSDA, NWS
- NOAA involvement in GPM
 - Steering Group on Precipitation Measurement From Space (SGPMS)
 - Joint activities on PMM Science Team
 - Developing roadmap for “One NOAA precipitation Product Enterprise”
NOAA’s Steering Group on Precipitation Measurement from Space

Co-Chairs
- Rob Cifelli (OAR)
- Ralph Ferraro (NESDIS)
- Pingping Xie (NWS)

Advisory Board
- Mike Kalb (NESDIS), Chair
- Sid Boukabara (JCSDA)
- Mitch Goldberg (NESDIS/JPSS)
- Steve Goodman (NESDIS/GOES-R)
- Jin Huang (NWS)
- John Pereira (NESDIS)
- Allen White (OAR)
- John Bates (NESDIS/NCDC)

NESDIS
- Chandra Kondragunta
- Tom Schott
- Bob Kuligowski
- Brian Nelson

NWS
- James Yoe (JCSDA)
- Yu Zhang
- Mike Bodner

OAR
- JJ Gourley
- Wayne Higgins
- Tilden Meyers
- Gary Wick

September 2013

GPM
- Monitoring
- Mitigation
- Decadal Trends

Analysis
- Nowcasting
- Warnings
- NWP
Some test data from the GPM core

166 GHz V-Pol
NOAA GOES-R and JPSS Synergy with GPM

• **GOES-R** Sensors useful for rapid refresh precipitation estimation and storm monitoring
 • ABI and GLM
 • FY14 New start Risk reduction projects (S. Goodman)
 • Focus - fusion of ground radar and IR rainfall estimates
 • MRMS, MPE, CMORPH
• **GOES-R Proving Ground**
 • Accelerating the use of GOES-R proxy products across NOAA

• **JPSS** Key MW sensors to precipitation
 • ATMS, AMSR-2
 • Part of the GPM constellation
 • FY12 Risk reduction projects (M. Goldberg)
 • ATMS snowfall rates
 • CMORPH enhancements with snowfall rates
 • New call of NOI’s later in FY14

• Evolving NESDIS “Enterprise” Program
 • Common algo/ground system for GOES and JPSS
NOAA HMT Synergy with GPM

- HMT conducts research on precipitation and weather conditions that can lead to flooding
 - Improve physical process understanding
 - Prototype new observations, models, algorithms
 - Evaluate precipitation products
- Foster transition of scientific advances and new tools into forecasting operations
 - A forum for testing NOAA GPM products
 - R2O
- Quantitative Precipitation Estimation (QPE)
 - Major activity area for HMT and GPM
 - NASA IPHEX and HMT-SEPS
HMT-Southeast Pilot Study (HMT-SEPS)

- Planned for May 2013 – September 2014 in western North Carolina (Upper Catawba watershed)
- Operationally-oriented research on extreme precipitation and forecast challenge identification (QPE and QPF)
- NOAA instrumentation plus leverage additional assets from NASA ground validation campaign (IPHEX)
- “Pilot study”: Long-term plan, vision unclear at this time; if value is demonstrated, could consider expanding, prolonging (provided external support could be garnered)
HMT-SEPS Instrument Deployment

- 4 profiler sites and 6 surface meteorology sites
- Additional NASA precipitation gauge and disdrometer added to each surface site

<table>
<thead>
<tr>
<th>Site Name</th>
<th>Site ID</th>
<th>Elev (m)</th>
<th>449</th>
<th>915</th>
<th>RASS</th>
<th>S-band</th>
<th>Met</th>
<th>Soil Moisture</th>
<th>Parsivel</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brindletown</td>
<td>BDT</td>
<td>355</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Crossnore</td>
<td>CNE</td>
<td>1008</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Hankins</td>
<td>HKS</td>
<td>379</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Marion</td>
<td>MRO</td>
<td>384</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Mount Hebron</td>
<td>MTH</td>
<td>519</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>New Bern</td>
<td>EWN</td>
<td>3</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Old Fort</td>
<td>OFT</td>
<td>421</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Spruce Pine</td>
<td>SPE</td>
<td>833</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Table Rock</td>
<td>TBR</td>
<td>356</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Woodlawn</td>
<td>WLN</td>
<td>523</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>
NC DENR Profilers in Raleigh and Charlotte, NC

- Working closely with the North Carolina State Department of Environment and Natural Resources/Division of Air Quality
- Raleigh, NC (RAL):
 - 915-MHz Boundary Layer Wind Profiler with RASS; MADIS: RALNC
 - ESRL recently repaired – now operational
- Charlotte, NC:
 - 915-MHz Boundary Layer Wind Profiler with RASS; MADIS: CHANC
 - Works; but needs software upgrade for improved clutter removal and melting level detection
- Also in process of adding EPA RTP profiler to MADIS, HMT-SEPS network

Testing from NOAA parking lot: Feb 2013
NOAA GPM Proving Ground and HMT-SEPS: QPE Research

• Purpose: test new algorithms and products, evaluate product performance and facilitate exchange of GPM products within NOAA

• HMT-SEPS provides an opportunity to test, evaluate, and compare QPE approaches (i.e., radar, gauge, satellite) as well as an opportunity to improve QPE algorithms

• Goal: develop the best possible QPE for operational users
QPE Evaluation in HMT-SEPS

• Similar to QPE evaluation approach in HMT-West
• Gauge, radar, and satellite QPE
 • MRMS
 • MPE
 • SCaMPR
 • CMORPH
 • Others?
• Data fusion development and testing

MRMS with KPIX radar
MRMS without KPIX radar
Precipitation as an Overarching Theme
Next Steps

• Conduct QPE research objectives related to HMT-SEPS

• Joint participation of NOAA HMT-SEPS and NASA IPHEX

• Flesh out the One NOAA precipitation Product Enterprise roadmap